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X. Ding, J.J. Xu, M.C.E. Yagoub + and Q.J. Zhang

Department of Electronics, Carleton University, Ottawa, Ontario, Canada K 1S 5B6
+ School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada, KIN 6N5

Abstract : In this paper, we present a new approach for can easily handle nonlinearities in problem behaviours.
modeling the high-frequency effects of embedded passives Neural network techniques have been widely used to model
in multilayer printed circuits, utilizing state space equations variety of microwave device/circuits such as transmission
or equivalent circuit together with neural network line components [5], bends [6], vias [7], spiral inductors [8],
techniques. In this approach, the neural network based and FET devices [5, 9].
model structure is trained using full wave electromagnetic
(EM) data. The resulting embedded passive models are Embedded passives represent an emerging technology area
accurate and fast, can be used in both frequency/time that has the potential for increased reliability, improved
domain simulators. Examples of embedded resistor and electrical performance, size shrinkage, and reduced cost.
capacitor models demonstrate that the combined model can The conventional approach for circuit and system design
accurately represent EM behavior in microwave/RF circuit requires equivalent circuits to capture the response of
design. In high-level circuit design, we applied our embedded passives [10]. But the equivalent circuit method
combined EM based neural models for signal integrity may not be accurate enough to reflect high frequency EM
analysis and design of multilayer circuit to illustrate that the effects. Recently, neural network techniques have been
geometrical parameters can be continuously adjusted by introduced to model frequency behavior of embedded
using neural network techniques. Optimization and Monte- passives [1]. However, such ANN models, trained to learn
Carlo analysis are performed showing that the combined S-parameters data, cannot be used directly into time-domain
models can be efficiently used in place of computationally circuit simulation and optimization. Our target was to
intensive EM models of embedded passives to speed up develop passive ANN based models from EM data that can
circuit design. be used directly in both time and frequency domain circuit

I. INTRODUCTION design.

The drive in the electronics industry for manufacturibility- In this paper, we present a novel approach to model high-
driven design and time-to-market demands powerful and frequency effects of embedded passives in multilayer
efficient computer-aided design (CAD) techniques. As the printed circuits based on combined equivalent circuit or
signal frequency increase, the dimensions of embedded state space theory together with neural networks. Our
passives in multilayer circuits become a significant fraction combined model is a hierarchical structure with two levels.
of signal wavelength. The conventional time/frequency In the lower level, a neural network maps the
domain electrical models for the components are not geometrical/physical parameters of the passive component
accurate anymore. As EM effects play an important role in into coefficient matrices of state equations or lumped
microwave/RF circuit design, models with continuous component values of a given equivalent circuit. In the
physical/geometrical information must include EM effects higher level, we export the coefficient matrices into the state
[1]. Furthermore, the need of optimization and statistical space equation or component values into the equivalent
analysis taking into account process variations and circuit to compute the EM response in either frequency or
manufacturing tolerances in the components makes it time domain circuit design. The accurate and fast ANN
extremely important that the component models should be based embedded passive models are trained from full wave
accurate and fast so that the design solutions can be EM data. Our method combines existing modeling
achieved feasibly and reliably, techniques and recent neural network approaches to

efficiently perform simulation and optimization. Based on
Recently, artificial neural network (ANN) modeling neural network techniques, geometrical/physical
approach has been studied for microwave modeling and parameters become design variables to improve circuit
design [2-4]. The neural models can be as fast as empirical performance and reduce design/manufacture cost.
models and as accurate as detailed physics models.

In Section II, the problem for neural modeling of embedded
For high-level circuit design, the component models should passives is summarized. In Section III, we present the
be continuously varied both with frequency, geometrical combined equivalent circuit and neural network (EC-NN)
and/or electrical parameters. Therefore, modeling modeling approach. The combined State space equation and
techniques that can provide such continuous variations are neural network (SSE-NN) modeling approach is presented
essential and ANN models exactly meet for these in section IV. The method is demonstrated by embedded
requirements. They are continuous, multi-dimensional and resistor and capacitor examples in section V. Signal
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integrity of multilayer circuit, which includes SSE-NN weights w such that E(w) is minimized. A trained neural
models of embedded passives, is used to demonstrate the model can then be used online during microwave design
application of the model for circuit simulation. Optimization stage providing fast model evaluation replacing original
and Monte-Carlo analysis are performed showing that the slow model from EM simulators. The benefit of the neural
geometry inputs can be continuously adjustable by using model is especially significant when the model is
our combined models and the model evaluation is much repetitively used in design processed such as optimization,
faster than computationally intensive physical/EM model of Monte-Carlo analysis, and yield optimization [11].
passives in microwave design. However, MLP models, trained to learn S-parameters data,

cannot be used directly into time-domain circuit simulationeSivesNeul and optimization. We aim to develop a fast and accurate
combined model, which uses equivalent circuit and neural

Let x represent a Nx-vector containing parameters of a network, through EM data to learn the embedded passive
microwave device/circuit, e.g., length and width of an problem.
embedded resistor, or thickness and dielectric constant of an
embedded capacitor. Let . represent a N -- vector Let g, = {R, L, C} be a N,-vector containing the values of

containing the responses of the component under lumped components of a given equivalent circuit topology T,.

consideration, e.g., Y- or S-parameters. The physics/EM We use a neural network to represent g. as

relationship between , and x can be highly nonlinear and 9, = fANN (x, w) (3)
multi-dimensional. The theoretical model for this and then the combined model can be defined as
relationship may not be available, or theory may be too
complicated to implement, or the theoretical model may be .W(c)=ff (T, (fAN (X, W)), cO) (4)
computationally too intensive for online microwave design
and repetitive optimization (e.g., 3D full-wave EM analysis y(t)=f, (T0p Y.ANN (x, w)), t) (5)
inside a Monte-Carlo statistical design loop). We aim to
develop a fast and accurate neural model by where co is the angular frequency, 5(w) and y(t) are the
teaching/training a neural network to learn the embedded combined model response in frequency and time domain
passive problem. Let the neural network model be defined respectively, e.g., .(w) can be S- or Y-parameters and y(t)
as can be the currents i(t) and voltages v(t) of a two port

.=fANN(x,w) (1) embedded passive. Therefore, a combined model realizes
the x - .5/y relationship through a MLP and then equivalent

where w represents the parameters inside the neural network t.

also called as the weight vector. The most widely used

neural network structure is the feedforward multilayer III. Combined Equivalent Circuit and Neural
perceptrons (MLP) [2, 5, 7] where neurons are grouped into Network EC-NNq Modeling Ap roach
layers, and each neuron in a layer acts as a smooth switch
that produces a response between low and high state
according the weighted responses of all neurons from the A. Introduction of EC-NN Model
preceding layer. The neural network structure allows the A number of fast equivalent circuit models of embedded
ability to represent multidimensional nonlinear input/output passive components are available. In [12, 13], two methods
mappings accurately, and to evaluate 5 from x quickly. To are presented for developing equivalent circuit using
enable a neural network to represent a specific microwave x optimization methods. Synthesize lumped element
-5 relationship, we first train the neural network to learn equivalent circuit from rational function is presented in

the microwave data pairs (xi, di) where xi is a sample of xd [10]. Although we can get equivalent circuit in many ways
the microwave darpareseting dhere data samplefd frm from measured or simulated EM data, an equivalent circuitis a vector representing the 5 data generated from only represents a fixed embedded passive structure. If the
microwave simulation or measurement under given sample embedded passive's geometrical/physical parameters need
xi, and i is the sample index. For training purpose, we define to be changed, we have to re-generate a new equivalent
an error function E(w) as circuit to match it.

In this paper, EC-NN model exploits neural network
II- N.)2 features to accurately predict element values of equivalent

E(w)= 2, (fAAmk (xi,w)--dki)2 (2) circuit based on geometrical/physical parameters. EC-NN
irTr k=1 model, motivated by [14], is a hierarchical model with two

where dki is the krh element of di, fAmN k (xi ,w) is the kth levels. At the lower level, a neural model maps the
output of the neural network for input sample xi and Tr is an geometrical/physical parameters of the passive component
index set of all training samples. The objective of neural into lumped component values of a given equivalent circuit.
network training is to adjust neural network connection At the higher level, we supply these values into the
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equivalent circuit to compute the EM response in frequency IV. Combined State Space Equation and Neural
or time domain circuit design. Network (SSE-NN) Modeling Approach

B. EC-NN Model development A. Formulation in Frequency-Domain

We utilize an existing equivalent circuit and combine it with Topology of equivalent circuit is a sensitive factor of the
a MLP together to make the model automatically as combined model accuracy and a given topology may not be
function of geometrical/physical parameters. The EM data suitable for different geometry and frequency range. In
of embedded passives, which consists of order to develop an accurate model, which can be
geometrical/physical parameters as inputs and represented more efficiently in both time and frequency
real/imaginary parts of S-parameters as outputs, are domain simulation, we proposed the combined SSE-NN
generated by simulation or measurement, modeling approach.

To create data for neural network training, we extract the EM data of an embedded passive can be collected
lumped component values based on the existing equivalent depending on different geometrical/physical parameters
circuit through a set of measured/simulated sample pairs of from full wave EM simulation/measurement. For a given
EM data. Considering some measurement noise in the EM frequency range, we can use transfer functions (polynomial
data, the parameter extraction criterion for each set of input rational functions) to represent the electrical behavior (e.g.,
geometry is defined as an optimization objective function as admittance Y matrix) of the embedded passives. For any

N two-port embedded passives, the following three transfer
Min E ff(Tp (gýp o))- di. (6) functions are adequate to represent Y11, Y21, and Y22,

P ieT, k=I respectively.

This objective function shows that adjusting the lumped bo +bls + ... +bb-,s"n-I + bns'
component values gp to map the S-parameters of high- HI (s) = "I (8.a)
frequency response of the equivalent circuit best match the ao + al$ + + an-S 1  + S

EM data in the interested frequency bandwidth. Due to the
complexity of the error function, iterative algorithms are H 2 (s) = do + dls +"" + dn-Isn-I + dnsn (8.b)
used to explore the lumped component values. The ao + als + + a,-+jsn- " +(sb

optimization algorithms we used are gradient and quasi-
Newton methods. We collected the lumped component co + CIS +... +nln-I + CnSn
values versus geometrical/physical parameters as neural H3 (s) = S (8.c)
network training data. We teach/train a MLP to learn the ao + als + ""+ as-s- +s
relationships between equivalent circuit component values where s = ja; and n is the number of effective order of the
and geometry. Let gpi be a vector representing gp data under passive. Let us define a real coefficient vector, as g, = {ao,
given sample xi. The error function is defined as alive. Let us din a rea coic in vctor, as.gd = Uai,

Na 1 .. an.); b0, b1, ... bn; C0, cj, .... c,; do, d1, .... d,,}. Using
Ar space-mapping concept [6], a relationship exists between

E(w)= 2If,.Alk(xw)-g9p•k. (7) the coefficients and geometrical/physical parameters.
irTr k=l However, the relationship would be highly nonlinear and

where gpi is the keh element of gp,. After training, the MLP too complicated. Therefore, we utilize neural network
can accuratly calculate the component values varied with features to learn the highly nonlinear relationship between
continous geometry for the given equivalent circuit. The last the coefficients and geometrical/physical parameters.
step is to export the EC-NN model into a user defined
simulation format, e.g., SPICE sub-circuit netlist format. In the coefficient parameter extraction procedure, we used
The EC-NN model includes two sections. The first section gradient and quasi-Newton optimization algorithms to
is a set of mathematical equations to represent the internal enforce H(s) to best match EM data. The objective function
structure of neural network that calculate the lumped was defined as
component values based on different geometry/physical 3
inputs. The second section is the updated equivalent circuit, Min I nHk(g9,,)-d) - d (9)
which receives the element values from MLP outputs. In a ierr k=l
circuit simulator, the EC-NN model will be feed by
geometrical/physical parameters as inputs. The MLP and we use a neural network to learn the relationship
automatically calculates the element values in a user defined between coefficient vector g, and EM input parameters x,
equivalent circuit and supply the values into the equivalent
circuit to represent EM behavior in frequency and time v =fANN (X , W). (10)

domain. We used the center point of input space as the initial point
to optimize the coefficient vector values.
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B. State Space Equation for Time-Domain Simulation optimization constraint in the g, parameter extraction

Using coefficients g, in (8), we can define procedure.

0 1 0 ... 0 0 0 ... 0 0 The above criterions are added in the parameter extraction
0 0 1 ... 0 0 0 ... 0 0 to ensure that the rational functions not only accurately
S . : ". 0 .. .. represent EM behavior but also enforce the time domain

A- = - a -a 2 -.- a.a- 0 0 ... 0 0 model to be stable and passive.
0 0 ... 0 0 0 1 0 ... 0 D. Structure of the Combined SSE-NN Model
0 0 ... 0 0 0 0 1 ... 0
* . '.. . . .. . : Our combined SSE-NN model is a hierarchical structure

with two levels. At the lower level, a neural network maps
0 0 ... 0 0 -a0 -a, -a2 .... a,-I •,, the geometrical/physical parameters into g, vectors. At the

[0 Fb d 1  higher level, we insert the coefficient vectors into the state
B 0 . 1 0 0 ... D [ d. (11) equations to compute the EM response in frequency or time

B 0 0 ... 0 0 0 ... 1 2c,2 D domain simulation. Fig. 1 shows the structure of the
combined model for both EC-NN and SSE-NN.b o % .b ,_ 1,- &_ 1,bo do - % cý . .. d ,, -a. ,-a ._ ,a

[d0-d .d,_1 -an. 1d, eo-qaoc ** c,._1 -an_ 1cnb, For circuit CAD tools in time domain, we export our SSE-

NN into SPICE sub-circuit format. The lower neural
to form the state space equation, network will be described by a set of mathematical

X(t) =Ax(t) + But) equations, which calculate the coefficient values based on
(12) different geometrical/physical parameters and pass them

y(t) =Cx(t) + Du(t) into higher level. The equivalent circuit can be generated
from (11) and (12).

where x(t) is a vector of internal states, u and y are vectors
of the input and output signals, e.g., input voltages and
output currents of the embedded passive respectively. Our Test
combined model can be then implemented into a time Y-/S-parameters Y-/S-prameters from combined model
domain circuit simulator using the state space equation (12) - 4 t
or into a frequency domain circuit simulator using (8). Parameter

C. Stability and passivity ............................ extraction

To assure stability requirement in time domain simulation, E.C or S.S.E

the poles of the combined SSE-NN model need to be on left Refined
half plane (LHP) [15]. To enforce all the poles of the V----:- - Vector
transfer functions of embedded passives to be into LHP, we EM N a org T
added a set of constraints in the parameter extraction as Data Nw

T . ..... ...... . Neural
P n..order JP i2 ; where P2i=(s2+k2 s+k3 i) and T = n/2, if Network

i=1 Training

k2i>O & k 3i>O; all of real and complex roots in LHP.

T Geometrical/Physical Input Parameters xi
Poddorder= P1 " Pi2 i ; where Pl=(s +kl) and T = (n-l)/2, if

frI1 Figure 1. Structure of the combined EC-NN and SSE-NN
k1>O, k21>O & k3i>O; all of real and complex roots in LHP. models illustrating the model development process and the

testing phase. E.C. and S.S.E. represent equivalent circuit
where k ={k1 , k21, k3l, ... k2T, k3r} is a vector of and state space equation respectively.
components that lead to elements in the matrix A. For
example, in a 3 Pa order combined model, the denominator
coefficients are defined as ao = k, , k 3 ; a, = k. k, + k3 ; and

a2 =k] +k 2 , respectively. EM data has component's geometrical/physical parameters
and frequency as inputs and S-parameters as outputs. The
next phase is parameter extraction, which is carried out for

The criterion for passivity can be defined if the eigenvatues each geometry over the entire frequency range. The
of G = Re{Y} are positive [15, 16]. This condition can be objective here is to determine the coefficient values that
assured if y1 2 y 21 < YlY 22 , where the yjk• (j,k = 1,2) are real best fit the original EM data. Different geometrical

parts of the Y matrix elements. It has been. used as an parameter values and their corresponding coefficient values
are then re-arranged into neural network training data. A 3-
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layer MLP neural network is trained using quasi-Newton Because the neural network can provide the accurate
algorithm in NeuroModeler [17]. For any given geometrical component values continuously varied with geometry for
dimensions of the component within the range of the the equivalent circuit, the combined EC-NN model can be
training data, the trained MLP can predict the elements of in place of the computationally intensive physical/EM model
vector g,. We combine the state equation with the neural to efficiently provide EM effects in optimization and statistic
model using our hierarchical setup to obtain the overall design.
combined model. The inputs to the combined model are the
geometrical dimensions of the embedded component. The
intermediate outputs of the model are the corresponding To circuit simulator
coefficient vector values. The final outputs of the com bined ............................................ It ................................................. .!
model are component's EM behavior, e.g., S-parameters. In R1 R2 R2 RI
the test phase, an independent set of test data containing S- 0
parameters versus new geometrical parameter values (i.e., T C C
never seen during training) is generated using the EM
simulator. This data is used to test the accuracy of the gp
combined model. In the final phase, we formulate the
combined model into a set of mathematical expressions to
be directly used to carry out high-level circuit design in
time-domain simulators. EC-NN

V. Examples F Geometrical/Physical Inputs

In order to demonstrate the proposed modeling approach,
we developed embedded resistors and capacitors in EC-NN Figure 3. The structure of the combined EC-NN model for
and SSE-NN models. We applied the SSE-NN models in embedded resistors. The equivalent circuit is user defined.
signal integrity of multilayer circuit design to efficiently
perform optimization and statistic analysis.

A. Embedded Resistor 0.6

Accurate modeling of EM behaviors of embedded passive 0.5 XX06X"X0"X'0X"0"XX.X
0.4

used in high-speed multilayer printed circuit board is 03g 0,3
important for efficient high-speed circuit design. In this 0.2
example, a combined EC-NN model of an embedded 0 XX
resistor shown in Fig. 2 is developed. The EM data of the 0 X EC-NN model B ". X

embedded resistor is automatically generated from EM -o.1 ..... EM data B
simulation of Sonnet [18]. Length (L) and width (W) are -0.2
used as inputs. The outputs are real and imaginary parts of 0.1 0.5 0.9 4 8 12 16
SII and S21 in the EM data. Fig. 3 shows the structure of the Frequency (GHz)

EC-NN model for the embedded resistor, which includes an
equivalent circuit and a 3-layer MLP neural network. (a)

nd 0.6

2 Layer 0.5-x-x-x-x-x.X-.x.x.

0.4 f4 Q a

.' lStT .
1aa Layer 0 SSE-NN model A X.

Metal Layer• ,Y j. -- EM dataA X.

S0.1 X SSE-NN model B X.0 ...... EMdtB
Ground . -0.a

-0.2

Figure 2. 3-D physical structure of embedded resistor. 0.1 0 .5 0.9 4 8 12 16
Frequency (GHz)

The neural network is trained to learn the relationship about
the input geometry and the four lumped component values (b)
(RI, R2, Cl, C2). After the MLP is well trained, it can
accurately calculate the component values based on any Figure 4. Comparison of real part of S21 of embedded resistor
within geometrical/physical parameters for the given EC-NN model outputs (a) or SSE-NN model outputs (b) and
equivalent circuit even the parameters was never used in independent EM data which was never used in training. Curves
training. Testing is performed by comparing the outputs of A are generated based on W = 1.346 and L = 0.279 mm.
the overall EC-NN model and EM data, shown in Fig. 4(a). Curves B are generated based on W = 0.99 and L = 0.254 mm.
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The test error of combined EC-NN model is 5.8%. Further equivalent circuit used in our combined EC-NN model for
improvement of accuracy requires new topology of the embedded capacitor.
equivalent circuit. Instead of using human based trial and
error process, we use the proposed SSE-NN modeling
method. As the equivalent circuit for the embedded resistor
uses three capacitors, a 3rd order transfer function can
express the behavior of the embedded resistor in the SSE- Metal Laye
NN model.

Ground -'Ercap
Table I shows the model test error, which we achieved,

based on various orders of state equations in SSE-NN
modeling development. The test error demonstrated that the Figure 6. 3-D physical layout of embedded capacitor.
optimal number of internal states is three. In 4'h order
model, the additional internal state could not play an The neural network is trained to learn the embedded
important role in the EM behavior representation. However, capacitor inputs and lumped component values. For
more coefficients are needed in transfer function, more example, LI=0.035nH, CI= 1.135pF, C2=0.537pF when
freedom in parameter extraction and neural network L=0.736mm and Ercap=17.5. The S-parameter comparison
training. between the EC-NN model and original EM data is shown

in Fig. 8(a). Table II illustrates the different test error,
The best results are obtained with the 3rd order SSE-NN model. which we achieved, based on varied order formulas in SSE-
The agreement between 3rd order SSE-NN model and EM NN modeling development.
data is achieved even though the independent testing data
was never seen in training, shown in Fig. 4(b). To verify The optimal transfer function is 3rd order to represent the
stability and passivity, the three LHP poles of the embedded EM based capacitor. Testing is performed by comparing the
resistor model are -1.4411 and -0.0144 ± jO.0539, and the outputs of combined SSE-NN models and EM data. The
passivity condition is satisfied as shown in Fig. 5. agreement between our 3rd order SSE-NN model and EM

data is obtained even though the independent testing data
Table I. Comparison of resistor SSE-NN model with different was never seen in training, shown in Fig. 8(b).

order formulations.

Order Test Error To circuit simulator
2 n d 1 5 %. . . . .... ....... .... ...... ....... .... . .. " .. .. ..... .. ... ... ... ... ... .... ... ... .. ... ... ... .. .1

2n 1.59%
3rd 1.12% LI C2 Ll4!4h 2.38%IT 

ý
0.00025 gp

'Ng'

.. 0.00020-

S 0.00015.

0.00010- ECNI

0.00005 , CN
o -Geometrical/Physical Inputs J0.00000- , I

0 2 4 6 8 10 12 14 16

freq, GHz Figure 7. The combined EC-NN model structure for
embedded capacitor. The equivalent circuit is user defined.

Figure 5. The 3rd order SSE-NN model in frequency-
domain simulation and Yjk (j,k = 1,2) are real part of the Y 0 EO-NNmodeIA
matrix elements. The W is swept from 0.952mm to - EM data A
1.397mm. 0.6 .X EC-NNmodelB

... . .. ......-.... -...... EM data B

B. Embedded Square Capacitor 0.4 /',K

The physical structure of an embedded square capacitor is 0.2
shown in Fig. 6. The input parameters include length (L),
capacitor dielectric constant (ercap), and frequency. Real and
imaginary parts of S-parameters are generated from 3D full 0.1 0.5 0.9 4 8 12 16
wave EM simulator, Ansoft-HFSS [19]. Fig. 7 shows the Frequency (GHz)

(a)
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0.8 0 SSE-NNmodel-A

0.7 - EM data A 10 Input Signal

0.6 X SSE-NN model B 86 Before apt.
0.6 X", ...... EM data 8 6 --e--AfterOpt.

X 050.4 m

S0.32
0.2 X,2€ "K.)K)K 0 a n

0.1 .•-2

0 - -4

0.1 0.5 0.9 4 8 12 16 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (GHz) Tnme (ns)

(b) Figure 10. Comparison of signal from input buffer, and output

Figure 8. Comparison of real part of S21 of embedded signals before and after combined SSE-NN models

capacitor EC-NN model outputs (a) or SSE-NN model outputs optimization.
(b) and independent EM data. Curves A and B are generated
based on inputs L = 0.736mm and L = 0.787mm respectively. The optimization used 136 iterations including repetitive

evaluation of combined SSE-NN models to reach the
Ta diffCompariont orfcacorm ns. mcriteria of the optimization goal and the total computation

time based on our combined SSE-NN models is

Order Test Error 3.75minutes. The results show that the combined models

2nd 2.20% provide possibility to adjust the geometry of embedded
3rd 1.67% passives in high-frequency circuit design. Because we used

1.7 neural models to learn the nonlinear relationship between

4 2.57% geometry and coefficient vectors, the geometry becomes

variable in circuit design.
3. Signal Integrity Example

To further confirm the validity of the proposed combined We also performed statistical analysis of the signal integrity
model in time-domain, we plugged the above resistor and circuit with our SSE-NN models in a three-coupled
square capacitor SSE-NN models into a time-domain transmission line circuit as shown in Fig. 11. Monte-Carlo
simulator, i.e., Hspice [20] to perform circuit simulation and analysis of signal integrity curves with geometrical
optimization including geometrical and physical parameters parameters as statistical design variables are shown in Fig.
of the embedded passives. The models help to achieve a 12. The total simulation time for 500 output curves based on
convenient link between EM behaviors and high-level the geometry tolerance around the nominal design center is
circuit design, improving design accuracy and efficiency. In 8.24 minutes using proposed neural models by Hspice.
this paper, we use signal integrity of multilayer circuit as However, the required time of Ansoft-HFSS for 500
shown in Fig. 9, where the length and width of embedded different geometry is more than 8 hours. The proposed
resistor and length and dielectric constant of embedded combined models retain the advantages of neural network
capacitor are adj ustable. learning, speed, and accuracy, and provide EM effects in

high-level circuit design.
Input buffer Output buffer

3 coupled transmission line Point Buffer

50 1 pF

Figure 9. Three dimensional illustration of signal integrity 0
of multilayer circuit with embedded resistor and capacitor. 5 5on

In optimization process, whenever optimization changes the
geometry, the corresponding combined models are called Figure 11. The three coupled transmision line circuit.

with the new geometrical dimensions as inputs. From output U EM capacitor SSE-NN model;
comparison, as shown in Fig. 10, the output curves have U EM resistor SSE-NN model
been improved in terms of distortion and time delay.
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